Fault Detection via 2.5D Transformer U-Net with Seismic Data Pre-Processing

Author:

Tang Zhanxin1,Wu Bangyu1ORCID,Wu Weihua2,Ma Debo3

Affiliation:

1. School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

2. School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China

3. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China

Abstract

Seismic fault structures are important for the detection and exploitation of hydrocarbon resources. Due to their development and popularity in the geophysical community, deep-learning-based fault detection methods have been proposed and achieved SOTA results. Due to the efficiency and benefits of full spatial information extraction, 3D convolutional neural networks (CNNs) are used widely to directly detect faults on seismic data volumes. However, using 3D data for training requires expensive computational resources and can be limited by hardware facilities. Although 2D CNN methods are less computationally intensive, they lead to the loss of correlation between seismic slices. To mitigate the aforementioned problems, we propose to predict a 2D fault section using multiple neighboring seismic profiles, that is, 2.5D fault detection. In CNNs, convolution layers mainly extract local information and pooling layers may disrupt the edge features in seismic data, which tend to cause fault discontinuities. To this end, we incorporate the Transformer module in U-net for feature extraction to enhance prediction continuity. To reduce the data discrepancies between synthetic and different real seismic datasets, we apply a seismic data standardization workflow to improve the prediction stability on real datasets. Netherlands F3 real data tests show that, when training on synthetic data labels, the proposed 2.5D Transformer U-net-based method predicts more subtle faults and faults with higher spatial continuity than the baseline full 3D U-net model.

Funder

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3