Affiliation:
1. Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
Abstract
Because clouds and snow block the underlying surface and interfere with the information extracted from an image, the accurate segmentation of cloud/snow regions is essential for imagery preprocessing for remote sensing. Nearly all remote sensing images have a high resolution and contain complex and diverse content, which makes the task of cloud/snow segmentation more difficult. A multi-branch convolutional attention network (MCANet) is suggested in this study. A double-branch structure is adopted, and the spatial information and semantic information in the image are extracted. In this way, the model’s feature extraction ability is improved. Then, a fusion module is suggested to correctly fuse the feature information gathered from several branches. Finally, to address the issue of information loss in the upsampling process, a new decoder module is constructed by combining convolution with a transformer to enhance the recovery ability of image information; meanwhile, the segmentation boundary is repaired to refine the edge information. This paper conducts experiments on the high-resolution remote sensing image cloud/snow detection dataset (CSWV), and conducts generalization experiments on two publicly available datasets (HRC_WHU and L8 SPARCS), and the self-built cloud and cloud shadow dataset. The MIOU scores on the four datasets are 92.736%, 91.649%, 80.253%, and 94.894%, respectively. The experimental findings demonstrate that whether it is for cloud/snow detection or more complex multi-category detection tasks, the network proposed in this paper can completely restore the target details, and it provides a stronger degree of robustness and superior segmentation capabilities.
Funder
National Natural Science Foundation of PR China
Subject
General Earth and Planetary Sciences
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献