Comparison of Cloud Properties between SGLI Aboard GCOM-C Satellite and MODIS Aboard Terra Satellite

Author:

Khatri Pradeep1,Hayasaka Tadahiro1

Affiliation:

1. Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai City 980-8578, Japan

Abstract

This study presents a comprehensive comparison of Level 2.0 cloud properties between a Second-generation Global Imager (SGLI) aboard the GCOM-C satellite and a Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, to better understand the qualities of cloud properties obtained from SGLI/GCOM-C launched on 23 December 2017. The cloud pixels identified as water phase by both satellite sensors are highly consistent to each other by more than 90%, although the consistency is only ~60% for ice phase cloud pixels. A comparison of cloud properties—cloud optical thickness (COT) and cloud particle effective radius (CER)—between these two satellite sensors reveals that water and ice cloud properties can have different degrees of agreement depending on underlying surface. The relative difference (RD) values of 22% (18%) and 37% (24%) for water cloud COT (CER) comparison over ocean and land surfaces and respective values of 35% (42%) and 35% (62%) for comparisons of ice cloud properties, and also other comparison metrics, suggest better agreements for water cloud properties than for ice cloud properties, and for ocean surface than for land surface. Though cloud properties differences between MODIS and SGLI can arise from inherent features of cloud retrieval algorithms, such as differences in ancillary data, surface reflectance, cloud droplet size distribution function, model for ice particle habit, etc., this study further identifies the important roles of cloud thickness and Sun and satellite positions for differences in cloud properties between SGLI and MODIS: the differences in cloud properties are found to increase for thinner clouds, higher solar zenith angle, and higher differences in viewing zenith and azimuth angles between these satellite sensors, and such differences are more distinct for water cloud properties than for ice cloud properties.

Funder

the 3rd Research Announcement on the Earth Observations of the Japan Aerospace Exploration Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aerosol Effects on Water Cloud Properties in Different Atmospheric Regimes;Journal of Geophysical Research: Atmospheres;2023-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3