Broadband Photo-Excited Coherent Acoustic Frequency Combs and Mini-Brillouin-Zone Modes in a MQW-SESAM Structure

Author:

Li Changxiu,Gusev VitalyiORCID,Dimakis Emmanouil,Dekorsy Thomas,Hettich Mike

Abstract

A multiple quantum-well semiconductor saturable absorber mirror (MQW-SESAM) structure has been investigated by femtosecond pump-probe laser spectroscopy at a central wavelength of around 1050 nm. Coherent acoustic phonons are generated and detected over a wide frequency range from ~15 GHz to ~800 GHz. In the optical absorption region, i.e., in the multiple quantum wells (In0.27Ga0.73As), acoustic frequency combs centered at ~365 GHz, with a comb spacing of ~33 GHz, are generated. Most importantly, in the transparent region, i.e., in the distributed Bragg reflector, which is formed by a non-doped long-period semiconductor GaAs/Al0.95Ga0.05As superlattice, the mini-Brillouin-zone center, as well as zone-edge acoustic modes, are observed. The mini-zone-center modes with a fundamental frequency of 32 GHz can be attributed to the spatial modulation of the pump optical interference field with a period very close to that of the distributed Bragg reflector, in combination with the periodic spatial modulation of the electrostriction coefficient in the distributed Bragg reflector. The excitation of mini-zone-edge modes is attributed to the stimulated subharmonic decay of the fundamental center modes. Their subsequent back-folding to the mini-Brillouin-zone center makes them Raman active for the probe light.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 1064 nm半导体可饱和吸收镜的特性;Acta Optica Sinica;2023

2. Acoustic cavities in 2D heterostructures;Nature Communications;2021-06-01

3. Simulation of multiwavelength conditions in laser picosecond ultrasonics;SIMULATION;2021-03-25

4. Nonlinear Frequency-Mixing Photoacoustic Characterisation of a Crack;Springer Series in Measurement Science and Technology;2020

5. Special Issue on Laser Ultrasonics;Applied Sciences;2019-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3