Abstract
(1,2) In this theoretical study, we apply MesoFON, a field-calibrated individual-based model of mangrove forest dynamics, and its Lotka–Volterra interpretations to address two questions: (a) Do the dynamics of two identical red mangrove species that compete for light resources and avoid inter-specific competition by lateral crown displacement follow the predictions of classical competition theory or resource competition theory? (b) Which mechanisms drive the dynamics in the presence of inter-specific crown plasticity when local competition is combined with global or with localized seed dispersal? (3) In qualitative support of classical competition theory, the two species can stably coexist within MesoFON. However, the total standing stock at equilibrium matched the carrying capacity of the single species. Therefore, a “non-overyielding” Lotka–Volterra model rather than the classic one approximated best the observed behavior. Mechanistically, inter-specific crown plasticity moved heterospecific trees apart and pushed conspecifics together. Despite local competition, the community exhibited mean-field dynamics with global dispersal. In comparison, localized dispersal slowed down the dynamics by diminishing the strength of intra-/inter-specific competition and their difference due to a restriction in the competitive race to the mean-field that prevails between conspecific clusters. (4) As the outcome in field-calibrated IBMs is mediated by the competition for resources, we conclude that classical competition mechanisms can override those of resource competition, and more species are likely to successfully coexist within communities.
Funder
Deutsche Forschungsgemeinschaft
Reference107 articles.
1. Individual-Based Modeling and Ecology;Grimm,2005
2. Biologically generated spatial pattern and the coexistence of competing species;Pacala,1997
3. Introduction;Law,2000
4. An Explicitly Spatial Version of the Lotka-Volterra Model with Interspecific Competition;Neuhauser;Ann. Appl. Probab.,1999
5. Details That Matter: The Spatial Distribution of Individual Trees Maintains Forest Ecosystem Function
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献