The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations

Author:

Cagle Alexander E.ORCID,Armstrong Alona,Exley GilesORCID,Grodsky Steven M.ORCID,Macknick Jordan,Sherwin John,Hernandez Rebecca R.ORCID

Abstract

Floating photovoltaic solar energy installations (FPVs) represent a new type of water surface use, potentially sparing land needed for agriculture and conservation. However, standardized metrics for the land sparing and resource use efficiencies of FPVs are absent. These metrics are critical to understanding the environmental and ecological impacts that FPVs may potentially exhibit. Here, we compared techno-hydrological and spatial attributes of four FPVs spanning different climatic regimes. Next, we defined and quantified the land sparing and water surface use efficiency (WSUE) of each FPV. Lastly, we coined and calculated the water surface transformation (WST) using generation data at the world’s first FPV (Far Niente Winery, California). The four FPVs spare 59,555 m2 of land and have a mean land sparing ratio of 2.7:1 m2 compared to ground-mounted PVs. Mean direct and total capacity-based WSUE is 94.5 ± 20.1 SD Wm−2 and 35.2 ± 27.4 SD Wm−2, respectively. Direct and total generation-based WST at Far Niente is 9.3 and 13.4 m2 MWh−1 yr−1, respectively; 2.3 times less area than ground-mounted utility-scale PVs. Our results reveal diverse techno-hydrological and spatial attributes of FPVs, the capacity of FPVs to spare land, and the utility of WSUE and WST metrics.

Funder

Office of Energy Efficiency and Renewable Energy

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference132 articles.

1. Where Sun Meets Water: Floating Solar Handbook for Practitioners,2019

2. Techno–ecological synergies of solar energy for global sustainability

3. Floating Solar Landscapehttps://www.greentechmedia.com/articles/read/the-state-of-floating-solar-bigger-projects-and-climbing-capacity

4. Floating Photovoltaic Systems: Assessing the Technical Potential of Photovoltaic Systems on Man-Made Water Bodies in the Continental United States

5. A review of floating photovoltaic installations: 2007-2013

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3