Characterization of Inhalable Aerosols from Cosmetic Powders and Sustainability in Cosmetic Products

Author:

Oh Hyeon-JuORCID,Kim JongbokORCID

Abstract

Consumers may be exposed to aerosols that penetrate the lungs while applying cosmetics in a powder form. Toxic ingredients contained in aerosols can have a detrimental effect on the respiratory system. Two types of cosmetic powders were selected to evaluate the quantitative exposure of aerosols released from facial and eyeshadow products for five minutes. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to analyze the morphology of the cosmetic particles and to measure the inorganic components in the related aerosol. Deposition fractions were calculated using the International Commission on Radiological Protection model to evaluate the deposition patterns in the regions based on the respiratory tract. The aerosol dosage was calculated from the aerosol concentrations. For all cosmetic powders, 78% of aerosol deposition occurred in the head airways, while less than 2.5% was deposited in the tracheobronchial region, and less than 1% was deposited in the alveolar regions. The calculated dosage for this study was 700 µg for PM10 and 200 µg for PM2.5. This study presents a strategy for improving the sustainability of the cosmetic industry by providing a model for the quantitative evaluation and respiratory-based deposition of aerosols released from cosmetic powders.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Indoor particulate matter exposure and correlation of PM2.5 with lung efficacy and SpO2 level of Dhaka City Dwellers;Air Quality, Atmosphere & Health;2024-05-22

2. Nanomaterials;Personal Care Products and Human Health;2023

3. Respiratory irritation and sensitization;Personal Care Products and Human Health;2023

4. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications;WIREs Nanomedicine and Nanobiotechnology;2022-10-07

5. Biocosmetics: technological advances and future outlook;Environmental Science and Pollution Research;2021-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3