A New Fast Calculating Method for Meshing Stiffness of Faulty Gears Based on Loaded Tooth Contact Analysis

Author:

Liu Zhe1,Wang Haiwei1,Lu Fengxia2,Wang Cheng3,Zhang Jiachi1,Qin Mingjian1

Affiliation:

1. Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi’an 710072, China

2. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3. Key Laboratory of Vehicle Transmission, China North Vehicle Research Institute, Beijing 100072, China

Abstract

Gear transmission systems are widely used in various fields. The occurrence of gear cracks, tooth pitting, and other faults will lead to the dynamic characteristics deterioration of the transmission system. In order to calculate the meshing stiffness of faulty gear pairs more effectively and precisely, this article improves the loaded tooth contact analysis (LTCA) method by analyzing the influence of different fault types on gear deformation, including bending-shearing deformation and contact deformation, which combines the accuracy of the finite element method (FEM) and the rapidity of the analytical method (AM). The improved LTCA method can model the fault areas accurately and optimize the deformation coordination equation under the actual meshing situation of the faulty gear tooth, making it suitable for calculating the meshing stiffness of faulty gears. Based on the calculation results of the finite element method, the accuracy of the improved meshing stiffness calculation method has been verified, and the sensitivity of different fault type parameters on meshing stiffness has been studied.

Funder

National Key Laboratory of Science and Technology on Helicopter Transmission

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3