Influence of Particle Properties on Filter Cake Compaction Behavior under Oscillatory Shear

Author:

Yildiz Tolga1ORCID,Gegenheimer Joel1,Gleiß Marco1,Nirschl Hermann1

Affiliation:

1. Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Straße am Forum 8, 76137 Karlsruhe, Germany

Abstract

Filter cake compaction is a common method for mechanical deliquoring of compressible filter cakes. In addition to the conventional squeezing compaction method, applying oscillatory shear to filter cakes at low pressure is an alternative compaction process in cake filtration. While basic differences in terms of compaction success have already been identified for various materials, a systematic analysis of the influence of material properties on compaction behavior under oscillatory shear is missing. The present work addresses the influence of particle size distribution and increasing particle agglomeration on the compaction success of oscillatory shear to further clarify the process knowledge and applicability. The compressibility achieved by this technique was investigated for calcium carbonate materials with various particle size distributions. The results show that the compaction potential increases from 17.3% for the coarsest material (x50,3 = 23.5 μm) to 26.6% for the finest material (x50,3 = 2.3 μm) with decreasing mean particle size. The more widely distributed material exhibits a higher compaction potential of 21.7% compared to 18.4% for the narrowly distributed material. Increasing particle agglomeration to improve the slurry filterability does not affect the achievable compaction states of the material by vibration compaction at sufficiently high energy input.

Funder

German Federation of Industrial Research Associations

KIT-Publication Fund of the Karlsruhe Institute of Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3