A Study of a Domain-Adaptive LSTM-DNN-Based Method for Remaining Useful Life Prediction of Planetary Gearbox

Author:

Liu Zixuan1,Tan Chaobin1,Liu Yuxin1,Li Hao1,Cui Beining1,Zhang Xuanzhe1

Affiliation:

1. North China Institute of Aerospace Engineering, Langfang 065000, China

Abstract

Remaining Useful Life (RUL) prediction is an important component of failure prediction and health management (PHM). Current life prediction studies require large amounts of tagged training data assuming that the training data and the test data follow a similar distribution. However, the RUL-prediction data of the planetary gearbox, which works in different conditions, will lead to statistical differences in the data distribution. In addition, the RUL-prediction accuracy will be affected seriously. In this paper, a planetary transmission test system was built, and the domain adaptive model was used to Implement the transfer learning (TL) between the planetary transmission system in different working conditions. LSTM-DNN network was used in the data feature extraction and regression analysis. Finally, a domain-adaptive LSTM-DNN-based method for remaining useful life prediction of Planetary Transmission was proposed. The experimental results show that not only the impact of different operating conditions on statistical data was reduced effectively, but also the efficiency and accuracy of RUL prediction improved.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3