Data-Driven Modeling Methods and Techniques for Pharmaceutical Processes

Author:

Dong Yachao1,Yang Ting1,Xing Yafeng12ORCID,Du Jian1,Meng Qingwei2

Affiliation:

1. Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

2. State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China

Abstract

As one of the most influential industries in public health and the global economy, the pharmaceutical industry is facing multiple challenges in drug research, development and manufacturing. With recent developments in artificial intelligence and machine learning, data-driven modeling methods and techniques have enabled fast and accurate modeling for drug molecular design, retrosynthetic analysis, chemical reaction outcome prediction, manufacturing process optimization, and many other aspects in the pharmaceutical industry. This article provides a review of data-driven methods applied in pharmaceutical processes, based on the mathematical and algorithmic principles behind the modeling methods. Different statistical tools, such as multivariate tools, Bayesian inferences, and machine learning approaches, i.e., unsupervised learning, supervised learning (including deep learning) and reinforcement learning, are presented. Various applications in the pharmaceutical processes, as well as the connections from statistics and machine learning methods, are discussed in the narrative procedures of introducing different types of data-driven models. Afterwards, two case studies, including dynamic reaction data modeling and catalyst-kinetics prediction of cross-coupling reactions, are presented to illustrate the power and advantages of different data-driven models. We also discussed current challenges and future perspectives of data-driven modeling methods, emphasizing the integration of data-driven and mechanistic models, as well as multi-scale modeling.

Funder

Fundamental Research Funds for China Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3