A Gas Prominence Prediction Model Based on Entropy-Weighted Gray Correlation and MCMC-ISSA-SVM

Author:

Shao Liangshan1,Gao Yingchao2

Affiliation:

1. Liaoning Institute of Science and Engineering, Jinzhou 121000, China

2. College of Business Administration, Liaoning Technical University, Huludao 125105, China

Abstract

To improve the accuracy of coal and gas prominence prediction, an improved sparrow search algorithm (ISSA) and an optimized support vector machine (SVM) based on the Markov chain Monte Carlo (MCMC) filling algorithm prediction model were proposed. The mean value of the data after filling in the missing values in the coal and gas prominence data using the MCMC filling algorithm was 2.282, with a standard deviation of 0.193. Compared with the mean fill method (Mean), random forest filling method (random forest, RF), and K-nearest neighbor filling method (K-nearest neighbor, KNN), the MCMC filling algorithm showed the best results. The parameter indicators of the salient data were ranked by entropy-weighted gray correlation analysis, and the salient prediction experiments were divided into four groups with different numbers of parameter indicators according to the entropy-weighted gray correlation. The best results were obtained in the fourth group, with a maximum relative error (maximum relative error, REmax) of 0.500, an average relative error (average relative error, MRE) of 0.042, a root mean square error (root mean square error, RMSE) of 0.144, and a coefficient of determination (coefficient of determination, R2) of 0.993. The best predicted parameters were the initial velocity of gas dispersion (X2), gas content (X4), K1 gas desorption (X5), and drill chip volume (X6). To improve the sparrow search algorithm (sparrow search algorithm, SSA), the adaptive t-distribution variation operator was introduced to obtain ISSA, and the prediction models of improved sparrow search algorithm optimized support vector machine based on Markov chain Monte Carlo filling algorithm (MCMC-ISSA-SVM), sparrow search algorithm optimized support vector machine based on Markov chain Monte Carlo filling algorithm (MCMC-SSA-SVM), genetic algorithm optimized support vector machine based on Markov chain Monte Carlo filling algorithm (MCMC-GA-SVM) and particle swarm optimization algorithm optimized support vector machine based on Markov chain Monte Carlo filling algorithm (MCMC- PSO -SVM) were established for coal and gas prominence prediction using the ISSA, SSA, genetic algorithm (genetic algorithm, GA) and particle swarm optimization algorithm (particle swarm optimization, PSO) respectively. Comparing the prediction experimental results of each model, the prediction accuracy of MCMC-ISSA-SVM is 98.25%, the error is 0.018, the convergence speed is the fastest, the number of iterations is the least, and the best fitness and the average fitness are the highest among the four models. All the prediction results of MCMC-ISSA-SVM are significantly better than the other three models, which indicates that the algorithm improvement is effective. ISSA outperformed SSA, PSO, and GA, and the MCMC-ISSA-SVM model was able to significantly improve the prediction accuracy and effectively enhance the generalization ability.

Funder

National Natural Science Foundation Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference33 articles.

1. Key technologies and outlook of power hazard ontogenetic warning methods in coal mines;Lu;J. Coal,2020

2. A mine ventilation optimization algorithm based on simulated annealing and improved particle swarm;Shao;J. Syst. Simul.,2021

3. Multifunctional physical simulation experimental system for deep coal rock engineering—Coal and gas protrusion simulation experiment;Lu;J. Coal,2020

4. Research on the mechanism of coal and gas protrusion;Yu;Coal Sci. Technol.,1979

5. Zhan, X.F. (2020). Research on Analysis and Prediction of Coal and Gas Protrusion Accidents. [Master’s Thesis, Liaoning Technical University].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3