Efficient Multi-Objective Optimization on Dynamic Flexible Job Shop Scheduling Using Deep Reinforcement Learning Approach

Author:

Wu Zufa1ORCID,Fan Hongbo12,Sun Yimeng1,Peng Manyu1

Affiliation:

1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China

2. Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Previous research focuses on approaches of deep reinforcement learning (DRL) to optimize diverse types of the single-objective dynamic flexible job shop scheduling problem (DFJSP), e.g., energy consumption, earliness and tardiness penalty and machine utilization rate, which gain many improvements in terms of objective metrics in comparison with metaheuristic algorithms such as GA (genetic algorithm) and dispatching rules such as MRT (most remaining time first). However, single-objective optimization in the job shop floor cannot satisfy the requirements of modern smart manufacturing systems, and the multiple-objective DFJSP has become mainstream and the core of intelligent workshops. A complex production environment in a real-world factory causes scheduling entities to have sophisticated characteristics, e.g., a job’s non-uniform processing time, uncertainty of the operation number and restraint of the due time, avoidance of the single machine’s prolonged slack time as well as overweight load, which make a method of the combination of dispatching rules in DRL brought up to adapt to the manufacturing environment at different rescheduling points and accumulate maximum rewards for a global optimum. In our work, we apply the structure of a dual layer DDQN (DLDDQN) to solve the DFJSP in real time with new job arrivals, and two objectives are optimized simultaneously, i.e., the minimization of the delay time sum and makespan. The framework includes two layers (agents): the higher one is named as a goal selector, which utilizes DDQN as a function approximator for selecting one reward form from six proposed ones that embody the two optimization objectives, while the lower one, called an actuator, utilizes DDQN to decide on an optimal rule that has a maximum Q value. The generated benchmark instances trained in our framework converged perfectly, and the comparative experiments validated the superiority and generality of the proposed DLDDQN.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference42 articles.

1. A review of dynamic job shop scheduling techniques;Mohan;Procedia Manuf.,2019

2. A survey of job shop scheduling problem: The types and models;Xiong;Comput. Oper. Res.,2022

3. Zhou, H., Gu, B., and Jin, C. (2022). Reinforcement Learning Approach for Multi-Agent Flexible Scheduling Problems. arXiv.

4. Zeng, Y., Liao, Z., Dai, Y., Wang, R., Li, X., and Yuan, B. (2022). Hybrid intelligence for dynamic job-shop scheduling with deep reinforcement learning and attention mechanism. arXiv.

5. A reinforcement learning approach to parameter estimation in dynamic job shop scheduling;Shahrabi;Comput. Ind. Eng.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3