A Comparative Study on Recent Developments for Individual Rare Earth Elements Separation

Author:

Pathapati Subbu Venkata Satyasri Harsha1ORCID,Free Michael L.1,Sarswat Prashant K.1

Affiliation:

1. Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA

Abstract

Facilitating the demands of modern society, namely, smartphones, televisions, electric vehicles, and high-stability aircraft structures, requires low-cost and high-performance materials and a corresponding change in the approach needed to design them. Rare earth elements (REEs) play a significant role in achieving these objectives by adding small amounts of these elements to alloys, thereby enhancing material properties. Despite being more abundant than precious metals, the 17 REEs exhibit subtle variations in their chemical and physical characteristics. Thus, their separation is still crucial for industrial applications. There is a corresponding need to develop more effective and efficient separation methods. Adding to the separation challenge is the complexity of the sources of REEs and related materials. Thus, large-scale production of REE materials is difficult. Current REE processing techniques can be categorized into pre-treatment, beneficiation, separation, and refining. Researchers have developed various technologies encompassing chemical, physical, and biological methods, focusing on economic and environmental considerations. However, not all these approaches can be scaled up for mass production. This article focuses on feasible strategies such as precipitation and crystallization, oxidation and reduction, ion exchange, adsorption, solvent extraction, and membrane separation. Further research into these traditional and modern methods can potentially revolutionize the separation dynamics of REEs.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3