Cryogenic Fracture Proliferation from Boreholes under Stresses

Author:

Cha Minsu1ORCID,Alqahtani Naif B.2ORCID,Wang Lei3ORCID

Affiliation:

1. Department of Civil Engineering, Jeju National University, Jeju-si 63243, Republic of Korea

2. Carbon Management Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia

3. Petroleum Engineering Department, Chengdu University of Technology, Chengdu 610059, China

Abstract

Cryogenic fracturing has been explored in recent years as a waterless fracturing method for well stimulation to avoid issues encountered in water-based hydraulic fracturing. Cryogenic stimulation using liquid nitrogen applies large thermal gradients on reservoir rocks to induce fractures. This study investigates the initiation and proliferation of cryogenic fractures from boreholes under external stress on specimens. We flowed liquid nitrogen through boreholes drilled through the center of transparent PMMA cylinders under uniaxial stress and monitored fracture proliferation, temperatures, and borehole pressures. Our results show that the effect of stress resembles that of hydraulic fractures such that fractures propagate more in the direction of the stress. Under loading perpendicular to the borehole axis, a cloud of annular and longitudinal fractures extends more in the direction of loading. Under loading parallel to the borehole axis, longitudinal fractures dominate, and annular fractures become more suppressed and more sparsely distributed than those of unconfined specimens. Even if fractures are driven to initiate against the influence of stress, such as those from a boundary edge of a high stress concentration, they gradually deflect in the direction of stress, similar to hydraulic fractures from perforation holes that curve toward a direction perpendicular to the minimum stress direction.

Funder

Jeju National University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3