Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets

Author:

He Song1,Liu Heyun1,Zhang Yuan2,Liu Haili1,Chen Wang1

Affiliation:

1. School of Energy and Electromechanical Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China

2. School of Graduate Education Teaching, Hunan University of Humanities, Science and Technology, Loudi 417000, China

Abstract

Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature environment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by using the anodic oxidation method with the conventional polished aluminum sheet as the reference. A comprehensive and in-depth analysis of the frosting mechanism has been proposed based on the contact angle, specific surface area, and fractal dimension. It was found that compared with the polished aluminum sheet, the nanoporous alumina sheets had good anti-frost properties. Due to its special interface effects, the porous alumina sheet with a 100 nm pore diameter had strong anti-frost performance under low temperatures and high humidity. In an environment with low surface temperature and high relative humidity, it is recommended to use hydrophilic aluminum fins with large specific areas and small fractal dimensions for the heat exchange fins of air source heat pump air conditioning systems.

Funder

Loudi Xiaohe Talent Project

Huhst PhD Research Start-up Fund

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3