Expanded Potential of the Polyamine Analogue SBP-101 (Diethyl Dihydroxyhomospermine) as a Modulator of Polyamine Metabolism and Cancer Therapeutic

Author:

Holbert Cassandra E.ORCID,Foley Jackson R.,Murray Stewart TracyORCID,Casero Robert A.

Abstract

Naturally occurring polyamines are absolutely required for cellular growth and proliferation. Many neoplastic cells are reliant on elevated polyamine levels and maintain these levels through dysregulated polyamine metabolism. The modulation of polyamine metabolism is thus a promising avenue for cancer therapeutics and has been attempted with numerous molecules, including enzyme inhibitors and polyamine analogues. SBP-101 (diethyl dihydroxyhomospermine) is a spermine analogue that has shown efficacy in slowing pancreatic tumor progression both in vitro and in vivo; however, the mechanisms underlying these effects remain unclear. We determined the effects of the SBP-101 treatment on a variety of cancer cell types in vitro, including lung, pancreatic, and ovarian. We evaluated the activity of enzymes involved in polyamine metabolism and the effect on intracellular polyamine pools following the SBP-101 treatment. The SBP-101 treatment produced a modest but variable increase in polyamine catabolism; however, a robust downregulation of the activity of the biosynthetic enzyme, ornithine decarboxylase (ODC), was seen across all of the cell types studied and indicates that SBP-101 likely exerts its effect predominately through the downregulation of ODC, with a minor upregulation of catabolism. Our in vitro work indicated that SBP-101 was most toxic in the tested ovarian cell lines. Therefore, we evaluated the efficacy of SBP-101 as a monotherapy in the immunosuppressive VDID8+ murine ovarian model. Mice treated with SBP-101 demonstrated a delay in tumor progression, a decrease in the overall tumor burden, and a marked increase in median survival.

Funder

National Institutes of Health

Samuel Waxman Cancer Research Foundation

University of Pennsylvania Orphan Disease Center Million Dollar Bike Ride

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3