Customized Utilization Strategies of Industrial Lignin to Produce Adsorbents and Flocculants Based on Fractionation and Adequate Structural Interpretation

Author:

Wang Lei,Yang Dewei,Li Xiaohan,Zhu Xinyi,Jiang Jungang,Zhang Yifan,Chen Xue,Yu HongboORCID

Abstract

Lignin, a by-product of pulping and biorefinery, has great potential to replace petrochemical resources for wastewater purification. However, the defects of lignin, such as severe heterogeneity, inferior reactivity and poor solubility, characterize the production process of lignin-based products by high energy consumption and serious pollution. In this study, several lignin fractions with relatively homogeneous structure were first obtained by organic solvent fractionation, and their structures were fully deciphered by various characterization techniques. Subsequently, each lignin component was custom-valued for wastewater purification based on their structural characteristics. Benefiting from the high reactivity and reaction accessibility, the lignin fraction (lignin-1) refined by dissolving in ethanol and n-butanol could been used as a raw material to produce cationic lignin-based flocculant (LBF) in a copolymerization system using green, cheap and recyclable ethanol as solvent. The lignin fraction (lignin-2) extracted by methanol and dioxane showed low reactivity and high carbon content, which was used to produce lignin-based activated carbon (LAC) with phosphoric acid as activator. Moreover, the influences of synthetic factors on the purification capacity were discussed, and the LBF and LAC produced under the optimal conditions showed distinguished purification effect on kaolin suspension and heavy metal wastewater, respectively. Furthermore, the corresponding purification mechanism and external factors were also elaborated. It is believed that this cleaner production strategy is helpful for the valorization of lignin in wastewater resources.

Funder

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3