Involvement of Ceramide Signalling in Radiation-Induced Tumour Vascular Effects and Vascular-Targeted Therapy

Author:

Sharma DeepaORCID,Czarnota Gregory J.

Abstract

Sphingolipids are well-recognized critical components in several biological processes. Ceramides constitute a class of sphingolipid metabolites that are involved in important signal transduction pathways that play key roles in determining the fate of cells to survive or die. Ceramide accumulated in cells causes apoptosis; however, ceramide metabolized to sphingosine promotes cell survival and angiogenesis. Studies suggest that vascular-targeted therapies increase endothelial cell ceramide resulting in apoptosis that leads to tumour cure. Specifically, ultrasound-stimulated microbubbles (USMB) used as vascular disrupting agents can perturb endothelial cells, eliciting acid sphingomyelinase (ASMase) activation accompanied by ceramide release. This phenomenon results in endothelial cell death and vascular collapse and is synergistic with other antitumour treatments such as radiation. In contrast, blocking the generation of ceramide using multiple approaches, including the conversion of ceramide to sphingosine-1-phosphate (S1P), abrogates this process. The ceramide-based cell survival “rheostat” between these opposing signalling metabolites is essential in the mechanotransductive vascular targeting following USMB treatment. In this review, we aim to summarize the past and latest findings on ceramide-based vascular-targeted strategies, including novel mechanotransductive methodologies.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3