The Identification of Broomcorn Millet bZIP Transcription Factors, Which Regulate Growth and Development to Enhance Stress Tolerance and Seed Germination

Author:

An Peipei,Li Xiang,Liu TianxiangORCID,Shui Zhijie,Chen Mingxun,Gao Xin,Wang Zhonghua

Abstract

Broomcorn millet (Panicum miliaceum L.) is a water-efficient and highly salt-tolerant plant. In this study, the salt tolerance of 17 local species of broomcorn millet was evaluated through testing based on the analysis of the whitening time and the germination rate of their seeds. Transcriptome sequencing revealed that PmbZIP131, PmbZIP125, PmbZIP33, PmABI5, PmbZIP118, and PmbZIP97 are involved in seed germination under salt stress. Seedling stage expression analysis indicates that PmABI5 expression was induced by treatments of high salt (200 mM NaCl), drought (20% W/V PEG6000), and low temperature (4 °C) in seedlings of the salt-tolerant variety Y9. The overexpression of PmABI5 significantly increases the germination rate and root traits of Arabidopsis thaliana transgenic lines, with root growth and grain traits significantly enhanced compared to the wild type (Nipponbare). BiFC showed that PmABI5 undergoes homologous dimerization in addition to forming a heterodimer with either PmbZIP33 or PmbZIP131. Further yeast one-hybrid experiments showed that PmABI5 and PmbZIP131 regulate the expression of PmNAC1 by binding to the G-box in the promoter. These results indicate that PmABI5 can directly regulate seed germination and seedling growth and indirectly improve the salt tolerance of plants by regulating the expression of the PmNAC1 gene through the formation of heterodimers with PmbZIP131.

Funder

the Key Research and Development Program of Shaanxi Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3