Estradiol (E2) Improves Glucose-Stimulated Insulin Secretion and Stabilizes GDM Progression in a Prediabetic Mouse Model

Author:

Liebmann MoritzORCID,Asuaje Pfeifer MelissaORCID,Grupe Katharina,Scherneck StephanORCID

Abstract

Female New Zealand obese (NZO) mice are an established model of preconceptional (pc.) prediabetes that progresses as gestational diabetes mellitus (GDM) during gestation. It is known that NZO mice show improvement in insulin sensitivity and glucose-stimulated insulin secretion (GSIS) during gestation in vivo. The latter is no longer detectable in ex vivo perifusion experiments in isolated islets of Langerhans, suggesting a modulation by extrapancreatic factors. Here, we demonstrated that plasma 17β-estradiol (E2) levels increased markedly in NZO mice during gestation. The aim of this work was to determine whether these increased E2 levels are responsible for the improvement in metabolism during gestation. To achieve this goal, we examined its effects in isolated islets and primary hepatocytes of both NZO and metabolically healthy NMRI mice. E2 increased GSIS in the islets of both strains significantly. Hepatic glucose production (HGP) failed to be decreased by insulin in NZO hepatocytes but was reduced by E2 in both strains. Hepatocytes of pregnant NZO mice showed significantly lower glucose uptake (HGU) compared with NMRI controls, whereby E2 stimulation diminished this difference. Hepatocytes of pregnant NZO showed reduced glycogen content, increased cyclic adenosine monophosphate (cAMP) levels, and reduced AKT activation. These differences were abolished after E2 stimulation. In conclusion, our data indicate that E2 stabilizes and prevents deterioration of the metabolic state of the prediabetic NZO mice. E2 particularly increases GSIS and improves hepatic glucose utilization to a lower extent.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3