Flow Cytometric Analysis of Oxidative Stress in Escherichia coli B Strains Deficient in Genes of the Antioxidant Defence

Author:

Jávega BeatrizORCID,Herrera Guadalupe,O’Connor José-Enrique

Abstract

The detection of reactive oxygen species (ROS) and the analysis of oxidative stress are frequent applications of functional flow cytometry. Identifying and quantifying the ROS species generated during oxidative stress are crucial steps for the investigation of molecular mechanisms underlying stress responses. Currently, there is a wide availability of fluorogenic substrates for such purposes, but limitations in their specificity and sensitivity may affect the accuracy of the analysis. The aim of our work was to validate a new experimental model based in different strains of Escherichia coli B deficient in key genes for antioxidant defense, namely oxyR, sodA and sodB. We applied this model to systematically assess issues of specificity in fluorescent probes and the involvement of different ROS in a bacterial model of oxidative stress, as the probes can react with a variety of oxidants and free radical species. Our results confirm the higher sensitivity and specificity of the fluorescent probe mitochondrial peroxy yellow 1 (MitoPY1) for the detection of H2O2, and its very low capacity for organic hydroperoxides, thus extending MitoPY1′s specificity for H2O2 in mammalian cells to a bacterial model. On the contrary, the fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA) is more sensitive to organic peroxides than to H2O2, confirming the lack of selectivity of H2DCF-DA to H2O2. Treatment with organic peroxides and H2O2 suggests a superoxide-independent oxidation of the fluorescent probe Hydroethidine (HE). We found a positive correlation between the lipophilicity of the peroxides and their toxicity to E. coli, suggesting greater quantitative importance of the peroxidative effects on the bacterial membrane and/or greater efficiency of the protection systems against the intracellular effects of H2O2 than against the membrane oxidative stress induced by organic peroxides. Altogether, our results may aid in preventing or minimizing experimental errors and providing recommendations for the proper design of cytometric studies of oxidative stress, in accordance with current recommendations and guidelines.

Funder

University of Valencia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3