Abstract
Lipid droplets (LDs) are intracellular organelles that are ubiquitous in many types of cells. The LD core consists of triacylglycerols (TGs) surrounded by a phospholipid monolayer and surface proteins such as perilipin 2 (PLIN2). Although TGs accumulate in the phospholipid bilayer of the endoplasmic reticulum (ER) and subsequently nascent LDs buds from ER, the mechanism by which LD proteins are transported to LD particles is not fully understood. Sar1 is a GTPase known as a regulator of coat protein complex Ⅱ (COPⅡ) vesicle budding, and its role in LD formation was investigated in this study. HuH7 human hepatoma cells were infected with adenoviral particles containing genes coding GFP fused with wild-type Sar1 (Sar1 WT) or a GTPase mutant form (Sar1 H79G). When HuH7 cells were treated with oleic acid, Sar1 WT formed a ring-like structure around the LDs. The transient expression of Sar1 did not significantly alter the levels of TG and PLIN2 in the cells. However, the localization of PLIN2 to the LDs decreased in the cells expressing Sar1 H79G. Furthermore, the effects of Sar1 on PLIN2 localization to the LDs were verified by the suppression of endogenous Sar1 using the short hairpin RNA technique. In conclusion, it was found that Sar1 has some roles in the intracellular distribution of PLIN2 to LDs in liver cells.
Funder
Japan Society for the Promotion of Science
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献