Study on the Transient Flow Characteristics of Multistage Centrifugal Pumps during the Startup Process before System Operation

Author:

Chen Chao1,Xu Hu1,Deng Fanjie1ORCID,Wu Kaipeng1,Zhang Zhen2,Si Qiaorui1ORCID

Affiliation:

1. National Research Centre of Pumps, Jiangsu University, Zhenjiang 212013, China

2. Jiangsu Branch of China Academy of Machinery Science and Technology Group Co., Ltd., Changzhou 213164, China

Abstract

Multistage pumps are essential in emergency water supply, irrigation, and other systems undergoing unavoidable hydraulic transitions like pump startup and valve operations. These transitions cause rapid changes in impeller speed, flow rate, and pressure, destabilizing the internal flow field and impacting system reliability. To study transient flow characteristics, a numerical analysis of a three-stage pump was conducted, focusing on vortex identification, entropy production, and time–frequency pressure pulsation. Using the SST turbulence model, the simulation analyzed different start times and flow rate variations. Findings revealed that shorter startup times intensified transient effects, with the head increasing rapidly initially and then stabilizing. Vortex structures showed periodic development and dissipation. Entropy production rose with impeller speed, peaking higher with shorter startups. Blade passing frequency dominated pressure pulsations, with increased low-frequency pulsations as speed rose. During valve opening, flow stabilization accelerated with increasing flow rates, reducing amplitude and eliminating low-frequency components. This research aids the reliable operation of high-pressure pumping systems in energy storage.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3