Affiliation:
1. School of Geographical Science and Tourism, Nanyang Normal University, Nanyang 473061, China
2. Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources (under Construction), Zhengzhou 450009, China
3. Yunnan Water Conservancy and Hydroelectric Survey Design and Research Institute, Kunming 650021, China
Abstract
Administrative strategies to cope with drought are steadily changing, from emergency procedures to day-to-day monitoring. More consideration must be paid to long-term and preventive drought control measures in the future. This paper discusses the risk of hydrological drought in the Yellow River Basin. The standardized runoff index (SRI) was used to characterize hydrological drought, and the run theory was used to identify drought states and quantify drought characteristic variables. Based on the drought severity and duration, a drought development plan was proposed and a three-dimensional copula function was constructed to obtain the joint distribution function of three-dimensional drought characteristic variables. A drought risk assessment system based on the loss × probability risk theory was constructed to explore the spatial and temporal characteristics of hydrological drought risk in the Yellow River Basin. Finally, according to the risk assessment results, the risk level was divided into low, medium and high risk, and a Bayesian network was used to explore the probability of hydrological drought. The main results are as follows: (1) From 1960 to 2018, the severity of hydrological drought in the Yellow River Basin increased, the duration lengthened, and the development speed accelerated. (2) The hydrological drought risk in the Yellow River Basin showed an overall upward trend, with the fastest increase in the HJ region of 0.041/10a. The highest annual average drought risk in the TDG region is 0.598. (3) The spatial transmission of hydrological drought risk is divided into three types: constant, enhanced and mitigation types, of which the constant type is the most common. The transmission probabilities of low, medium and high risk of hydrological drought from the HYK region to the low, medium and high risk of hydrological drought in the LJ region are 0.68, 0.66 and 0.78, respectively.
Funder
Key Laboratory of Water Management and Water Security for the Yellow River Basin, Ministry of Water Resources
Excellent Youth Foundation of the He’nan Scientific Committee