Hydrological Drought Risk Assessment and Its Spatial Transmission Based on the Three-Dimensional Copula Function in the Yellow River Basin

Author:

Li Hui1,Guo Jiamei1,Yan Dengming2,Wang Huiliang2ORCID,Jiang Xiujuan3

Affiliation:

1. School of Geographical Science and Tourism, Nanyang Normal University, Nanyang 473061, China

2. Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources (under Construction), Zhengzhou 450009, China

3. Yunnan Water Conservancy and Hydroelectric Survey Design and Research Institute, Kunming 650021, China

Abstract

Administrative strategies to cope with drought are steadily changing, from emergency procedures to day-to-day monitoring. More consideration must be paid to long-term and preventive drought control measures in the future. This paper discusses the risk of hydrological drought in the Yellow River Basin. The standardized runoff index (SRI) was used to characterize hydrological drought, and the run theory was used to identify drought states and quantify drought characteristic variables. Based on the drought severity and duration, a drought development plan was proposed and a three-dimensional copula function was constructed to obtain the joint distribution function of three-dimensional drought characteristic variables. A drought risk assessment system based on the loss × probability risk theory was constructed to explore the spatial and temporal characteristics of hydrological drought risk in the Yellow River Basin. Finally, according to the risk assessment results, the risk level was divided into low, medium and high risk, and a Bayesian network was used to explore the probability of hydrological drought. The main results are as follows: (1) From 1960 to 2018, the severity of hydrological drought in the Yellow River Basin increased, the duration lengthened, and the development speed accelerated. (2) The hydrological drought risk in the Yellow River Basin showed an overall upward trend, with the fastest increase in the HJ region of 0.041/10a. The highest annual average drought risk in the TDG region is 0.598. (3) The spatial transmission of hydrological drought risk is divided into three types: constant, enhanced and mitigation types, of which the constant type is the most common. The transmission probabilities of low, medium and high risk of hydrological drought from the HYK region to the low, medium and high risk of hydrological drought in the LJ region are 0.68, 0.66 and 0.78, respectively.

Funder

Key Laboratory of Water Management and Water Security for the Yellow River Basin, Ministry of Water Resources

Excellent Youth Foundation of the He’nan Scientific Committee

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3