Fine-Grained Permeable Surface Mapping through Parallel U-Net

Author:

Ogilvie Nathaniel1,Zhang Xiaohan1ORCID,Kochenour Cale2,Wshah Safwan1

Affiliation:

1. Vermont Artificial Intelligence Laboratory (VaiL), Department of Computer Science, University of Vermont, Burlington, VT 05404, USA

2. Spatial Analysis Laboratory (SAL), University of Vermont, Burlington, VT 05404, USA

Abstract

Permeable surface mapping, which mainly is the identification of surface materials that will percolate, is essential for various environmental and civil engineering applications, such as urban planning, stormwater management, and groundwater modeling. Traditionally, this task involves labor-intensive manual classification, but deep learning offers an efficient alternative. Although several studies have tackled aerial image segmentation, the challenges in permeable surface mapping arid environments remain largely unexplored because of the difficulties in distinguishing pixel values of the input data and due to the unbalanced distribution of its classes. To address these issues, this research introduces a novel approach using a parallel U-Net model for the fine-grained semantic segmentation of permeable surfaces. The process involves binary classification to distinguish between entirely and partially permeable surfaces, followed by fine-grained classification into four distinct permeability levels. Results show that this novel method enhances accuracy, particularly when working with small, unbalanced datasets dominated by a single category. Furthermore, the proposed model is capable of generalizing across different geographical domains. Domain adaptation is explored to transfer knowledge from one location to another, addressing the challenges posed by varying environmental characteristics. Experiments demonstrate that the parallel U-Net model outperforms the baseline methods when applied across domains. To support this research and inspire future research, a novel permeable surface dataset is introduced, with pixel-wise fine-grained labeling for five distinct permeable surface classes. In summary, in this work, we offer a novel solution to permeable surface mapping, extend the boundaries of arid environment mapping, introduce a large-scale permeable surface dataset, and explore cross-area applications of the proposed model. The three contributions are enhancing the efficiency and accuracy of permeable surface mapping while progressing in this field.

Funder

Broad Agency Announcement Program and Cold Regions Research and Engineering Laboratory

Publisher

MDPI AG

Reference42 articles.

1. Permeability and interface catchment: Measuring and mapping walkable access;Pafka;J. Urban. Int. Res. Placemaking Urban Sustain.,2017

2. Permeable pavement and stormwater management systems: A review;Imran;Environ. Technol.,2013

3. Contaminant occurrence and migration between high-and low-permeability zones in groundwater systems: A review;You;Sci. Total Environ.,2020

4. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., and Garcia-Rodriguez, J. (2017). A review on deep learning techniques applied to semantic segmentation. arXiv.

5. Garnot, V.S.F., and Landrieu, L. (2021, January 11–17). Panoptic segmentation of satellite image time series with convolutional temporal attention networks. Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3