A Combined Stochastic–Analytical Method for the Assessment of Climate Change Impact on Spring Discharge

Author:

Kovács Attila12ORCID,Stevanović Zoran3ORCID

Affiliation:

1. Institute of Environmental Management, University of Miskolc, H-3515 Miskolc-Egyetemváros, 3515 Miskolc, Hungary

2. National Laboratory for Water Science and Water Security, University of Miskolc, H-3515 Miskolc-Egyetemváros, 3515 Miskolc, Hungary

3. Centre for Karst Hydrogeology, Faculty of Mining & Geology, University of Belgrade, Djušina 7, 11000 Belgrade, Serbia

Abstract

This study describes a novel methodology for the prediction of spring hydrographs based on regional climate model (RCM) projections, with the goal of evaluating climate-change impact on karstic-spring discharge. A combined stochastic–analytical modeling methodology to predict spring discharge was developed and demonstrated on the Bukovica spring catchment at the Durmitor National Park, Montenegro. As a first step, climate model projections of the EURO-CORDEX ensemble were selected; and then bias correction was applied based on historical climate data. The regression function between rainfall and peak discharge was established by using historical data. Baseflow recession was described by using a double-component exponential model, where hydrograph decomposition and parameter fitting were performed on the Master Recession Curve. Rainfall time series from two selected RCM scenarios were applied to predict future spring-discharge time series. Bias correction of simulated hydrographs was performed, and bias-corrected combined stochastic–analytical models were applied to predict spring hydrographs based on RCM-simulated rainfall data. Both simulated climate scenarios predict increasing peak discharges and decreasing baseflow discharges throughout the 21st century. The model results suggest that climate change is likely to exaggerate the extremities both in terms of climate parameters and spring discharge by the end of the century both for moderate (RCP 45) and pessimistic (RCP 85) CO2 emission scenarios. To investigate the temporal distribution of extremities throughout the simulated time periods, the annual numbers of flood and drought days were calculated. Annual predicted flood days show an increasing trend during the first simulation period (2021–2050) and a slightly decreasing trend during the second simulation period (2071–2100), according to the RCP45 climate scenario. The same parameter shows a stagnant trend for the RCP 85 climate scenario. Annual predicted drought days show a decreasing trend both for the RCP 45 and RCP 85 climate scenarios. However, the annual number of drought days shows a large variation over time. There is a periodicity of extremely dry years with a frequency between 5 and 7 years. The number of drought days seems to increase over time during these extreme years. The study confirmed that the applied methodology can successfully be applied for spring-discharge prediction and that it offers a new prospect for its wider application in studying karst aquifers and their behavior under different climate-change scenarios.

Funder

Széchenyi Plan Plus program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference74 articles.

1. Karst waters in potable water supply: A global scale overview;Environ. Earth Sci.,2019

2. The World Karst Aquifer Mapping Project—Concept, mapping procedure and map of Europe;Chen;Hydrogeol. J.,2017

3. The response of three Mediterranean karst springs to drought and the impact of climate change;Nerantzaki;J. Hydrol.,2020

4. Hengeveld, H.G. (2000). A Discussion of Recent Simulations with CGCM. Climate Change Digest, Environment Canada. Environment Canada Special Edition CCD 00-01.

5. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3