The Pretreatment of Micro-Polluted Source Water through Phototrophic Biofilms under Variant Light Conditions

Author:

Li Hong-Yi1,Xu Runze23ORCID,Liu Ting-Feng1,Hu Zhi-Xin1

Affiliation:

1. School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China

2. Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China

3. College of Environment, Hohai University, Nanjing 210098, China

Abstract

The imbalance of inorganic nutrients in micro-polluted source water poses a huge threat to aquatic environments and human health. To pretreat micro-polluted source water, some biological reactors have been conducted at lab-scale. However, using phototrophic biofilms to pretreat micro-polluted source water at pilot-scale has yet to be explored, and the effects of light on the practical operation of phototrophic biofilms are poorly understood. In this study, the potential of pretreating micro-polluted source water by phototrophic biofilms was explored. The high light intensity (4500 lx, 60.75 μmol/m2/s) promoted the growth of phototrophic biofilms and the secretion of extracellular polymeric substance. The removal efficiency of inorganic nitrogen and total phosphorus in synthetic micro-polluted water was 56.82% and 40.90%, respectively. When interacting with actual micro-polluted source water, the nutrients in the actual micro-polluted source water were reduced by the stable pilot-scale phototrophic biofilms. The final concentration of effluent nutrients was lower than the Grade II surface water quality standard in China. Therefore, using phototrophic biofilms as a pretreatment facility in water treatment plants is a promising solution to this issue.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3