An Interpretable Recurrent Neural Network for Waterflooding Reservoir Flow Disequilibrium Analysis

Author:

Jiang Yunqi1,Shen Wenjuan2,Zhang Huaqing3,Zhang Kai14ORCID,Wang Jian3,Zhang Liming1

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum East China—Qingdao Campus, Qingdao 266580, China

2. Dagang Oilfield Group Ltd. Company, Tianjin 300280, China

3. College of Sciences, China University of Petroleum East China—Qingdao Campus, Qingdao 266580, China

4. School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China

Abstract

Waterflooding is one of the most common reservoir development programs, driving the oil in porous media to the production wells by injecting high-pressure water into the reservoir. In the process of oil development, identifying the underground flow distribution, so as to take measures such as water plugging and profile control for high permeability layers to prevent water channeling, is of great importance for oilfield management. However, influenced by the heterogeneous geophysical properties of porous media, there is strong uncertainty in the underground flow distribution. In this paper, we propose an interpretable recurrent neural network (IRNN) based on the material balance equation, to characterize the flow disequilibrium and to predict the production behaviors. IRNN is constructed using two interpretable modules, where the inflow module aims to compute the total inflow rate from all injectors to each producer, and the drainage module is designed to approximate the fluid change rate among the water drainage volume. On the spatial scale, IRNN takes a self-attention mechanism to focus on the important input signals and to reduce the influence of the redundant information, so as to deal with the mutual interference between the injection–production groups efficiently. On the temporal scale, IRNN employs the recurrent neural network, taking into account the impact of historical injection signals on the current production behavior. In addition, a Gaussian kernel function with boundary constraints is embedded in IRNN to quantitatively characterize the inter-well flow disequilibrium. Through the verification of two synthetic experiments, IRNN outperforms the canonical multilayer perceptron on both the history match and the forecast of productivity, and it effectively reflects the subsurface flow disequilibrium between the injectors and the producers.

Funder

National Natural Science Foundation of China

Major Scientific and Technological Projects of CNPC

Major Scientific and Technological Projects of CNOOC

Science and Technology Support Plan for Youth Innovation of University in Shandong Province

111 Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3