Semantic Information G Theory and Logical Bayesian Inference for Machine Learning

Author:

Lu

Abstract

An important problem in machine learning is that, when using more than two labels, it is very difficult to construct and optimize a group of learning functions that are still useful when the prior distribution of instances is changed. To resolve this problem, semantic information G theory, Logical Bayesian Inference (LBI), and a group of Channel Matching (CM) algorithms are combined to form a systematic solution. A semantic channel in G theory consists of a group of truth functions or membership functions. In comparison with the likelihood functions, Bayesian posteriors, and Logistic functions that are typically used in popular methods, membership functions are more convenient to use, providing learning functions that do not suffer the above problem. In Logical Bayesian Inference (LBI), every label is independently learned. For multilabel learning, we can directly obtain a group of optimized membership functions from a large enough sample with labels, without preparing different samples for different labels. Furthermore, a group of Channel Matching (CM) algorithms are developed for machine learning. For the Maximum Mutual Information (MMI) classification of three classes with Gaussian distributions in a two-dimensional feature space,only 2–3 iterations are required for the mutual information between three classes and three labels to surpass 99% of the MMI for most initial partitions For mixture models, the Expectation-Maximization (EM) algorithm is improved to form the CM-EM algorithm, which can outperform the EM algorithm when the mixture ratios are imbalanced, or when local convergence exists. The CM iteration algorithm needs to combine with neural networks for MMI classification in high-dimensional feature spaces. LBI needs further investigation for the unification of statistics and logic.

Publisher

MDPI AG

Subject

Information Systems

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3