Transfer Learning for Named Entity Recognition in Financial and Biomedical Documents

Author:

Francis Sumam,Landeghem Jordy Van,Moens Marie-Francine

Abstract

Recent deep learning approaches have shown promising results for named entity recognition (NER). A reasonable assumption for training robust deep learning models is that a sufficient amount of high-quality annotated training data is available. However, in many real-world scenarios, labeled training data is scarcely present. In this paper we consider two use cases: generic entity extraction from financial and from biomedical documents. First, we have developed a character based model for NER in financial documents and a word and character based model with attention for NER in biomedical documents. Further, we have analyzed how transfer learning addresses the problem of limited training data in a target domain. We demonstrate through experiments that NER models trained on labeled data from a source domain can be used as base models and then be fine-tuned with few labeled data for recognition of different named entity classes in a target domain. We also witness an interest in language models to improve NER as a way of coping with limited labeled data. The current most successful language model is BERT. Because of its success in state-of-the-art models we integrate representations based on BERT in our biomedical NER model along with word and character information. The results are compared with a state-of-the-art model applied on a benchmarking biomedical corpus.

Funder

SBO project ACCUMULATE

Publisher

MDPI AG

Subject

Information Systems

Reference25 articles.

1. BERT: Pre-training of deep bidirectional transformers for language understanding;Devlin;arXiv,2018

2. Natural language processing (almost) from scratch;Collobert;J. Mach. Learn. Res.,2011

3. Bidirectional LSTM-CRF models for sequence tagging;Huang;arXiv,2015

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3