A Dynamic RCS and Noise Prediction and Reduction Method of Coaxial Tilt-Rotor Aircraft Based on Phase Modulation

Author:

Wang Zeyang,Huang Jun,Yi Mingxu,Lu ShaozeORCID

Abstract

For tilt-rotor aircraft with coaxial rotors (coaxial rotor aircraft), reduction of radar cross section as well as acoustic noise can be essential for stealth design, and the rotation of the coaxial rotors can have an influence on noise and dynamic radar cross section (RCS) characteristics. In this paper, an approach to the prediction of both the sound pressure level (SPL) of noise and the dynamic RCS of coaxial-tilt aircraft is carried out, based on the theories of the FW-H equation, the physics optics method (PO) and the physical theory of diffraction (PTD) method. In order to deal with the rotating parts (mainly including coaxial rotors), a generated rotation matrix (GRM) is raised, aiming at giving a universal formula for the time-domain grid coordinate transformation of all kinds of rotation parts with arbitrary rotation centers and rotation axis directions. Moreover, a compass-scissors model (CSM) reflecting the phase characteristics of coaxial rotors is established, and a method of noise reduction and RCS reduction based on the phase modulation method is put forward in this paper. The simulation results show that with proper CSM parameter combinations, the reduction of noise SPL can reach approximately 3~15 dB and the reduction of dynamic RCS can reach 1.6 dBsm at most. The dynamic RCS and noise prediction and reduction method can be meaningful for the radar-acoustic stealth design of coaxial tilt-rotor aircrafts.

Funder

National Natural Science Fundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3