Abstract
How to form high-quality variable-section thin-walled conical parts through power spinning is a key issue for superalloy spinning manufacturing. A study into the hot power spinning deformation law of variable-section thin-walled conical parts and the effects of process parameters on surface straightness of forming quality are delineated in this paper. Through the establishment of finite element (FE) models using the single-factor and orthogonal design of experiments, the effects of four key process parameters on the surface straightness have been investigated and the optimal combination of process parameters have been yielded. These key factors include spinning temperature, roller nose radius, mandrel rotation rate and roller feed ratio. The results of FE simulation have been validated through the comparison of the surface straightness of modeled parts with those measured during a spinning experiment. The results reveal that, among the studied process parameters, the spinning temperature has the greatest influence on the surface straightness, followed by the roller nose radius and mandrel rotation rate, and the roller feed ratio has the least influence on the straightness. Larger mandrel rotation rate, smaller feed ratio and suitable spinning temperature can enhance the surface straightness.
Funder
National Natural Science Foundation of China
Ningbo Science and Technology Innovation 2025 Major Special Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献