Efficiency of Bromelain-Enriched Enzyme Mixture (NexoBrid™) in the Treatment of Burn Wounds

Author:

Pertea MihaelaORCID,Poroch VladimirORCID,Ciobanu PetruORCID,Filip Alexandru,Velenciuc Natalia,Lunca SorinelORCID,Panuta AndrianORCID,Buna-Arvinte MihaelaORCID,Luca StefanaORCID,Veliceasa Bogdan

Abstract

Background: The use of bromelain for the removal of eschar in deep burns is considered to be effective because it does not affect the unaffected skin and leaves a clean dermis after use. The main objective of this study is to find out whether bromelain is a good alternative to surgical debridement. In order to achieve that, we aim to evaluate its indications, limitations, and safety measures. Methods: The current study was conducted on a group of 30 patients with deep burn lesions, aged 20 to 56 years, from which 15 underwent enzymatic debridement and 15 patients acted as a control group in which primary surgical debridement was used. The mixture of enzymes enriched in bromelain, meant to dissolve burn eschar, was provided by NexoBrid™. The inclusion criteria were in agreement with the manufacturer’s protocols, but the application protocol was slightly modified in order to implement a better intern protocol and to assess its efficiency. Results: Complete eschar debridement was obtained in 13 of the 15 cases, from which 10 patients went through spontaneous healing and 3 needed to be covered with a skin graft. In the other 2 cases, partial eschar debridement was associated with surgical debridement and coverage with split-thickness skin graft in the same operation. The results obtained in the two groups were assessed with the Vancouver Scar Scale. Conclusions: Even though early excision followed by coverage with split-thickness skin graft remains the gold standard for the treatment of deep burns, enzymatic debridement can provide a series of advantages when the inclusion and exclusion criteria are respected. Bromelain is an alternative to surgical debridement that provides speed, tissue selectivity, safety, and less blood loss.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3