Methods for Noise Event Detection and Assessment of the Sonic Environment by the Harmonica Index

Author:

Alsina-Pagès Rosa MaORCID,Benocci RobertoORCID,Brambilla Giovanni,Zambon GiovanniORCID

Abstract

Noise annoyance depends not only on sound energy, but also on other features, such as those in its spectrum (e.g., low frequency and/or tonal components), and, over time, amplitude fluctuations, such as those observed in road, rail, or aircraft noise passages. The larger these fluctuations, the more annoying a sound is generally perceived. Many algorithms have been implemented to quantify these fluctuations and identify noise events, either by looking at transients in the sound level time history, such as exceedances above a fixed or time adaptive threshold, or focusing on the hearing perception process of such events. In this paper, four criteria to detect sound were applied to the acoustic monitoring data collected in two urban areas, namely Andorra la Vella, Principality of Andorra, and Milan, Italy. At each site, the 1 s A-weighted short LAeq,1s time history, 10 min long, was available for each hour from 8:00 a.m. to 7:00 p.m. The resulting 92-time histories cover a reasonable range of urban environmental noise time patterns. The considered criteria to detect noise events are based on: (i) noise levels exceeding by +3 dB the continuous equivalent level LAeqT referred to the measurement time (T), criteria used in the definition of the Intermittency Ratio (IR) to detect noise events; (ii) noise levels exceeding by +3 dB the running continuous equivalent noise level; (iii) noise levels exceeding by +10 dB the 50th noise level percentile; (iv) progressive positive increments of noise levels greater than 10 dB from the event start time. Algorithms (iii) and (iv) appear suitable for notice-event detection; that is, those that (for their features) are clearly perceived and potentially annoy exposed people. The noise events detected by the above four algorithms were also evaluated by the available anomalous noise event detection (ANED) procedure to classify them as produced by road traffic noise or something else. Moreover, the assessment of the sonic environment by the Harmonica index was correlated with the single event level (SEL) of each event detected by the four algorithms. The threshold value of 8 for the Harmonica index, separating the “noisy” from the “very noisy” environments, corresponds to lower SEL levels for notice-events as identified by (iii) and (iv) algorithms (about 88–89 dB(A)) against those identified by (i) and (ii) criteria (92 dB(A)).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. Good Practice Guide on Noise Exposure and Potential Health Effects,2010

2. Noise pollution: non-auditory effects on health

3. Burden of Disease from Environmental Noise. Quantification of Healthy Life Years Lost in Europe;Fritschi,2011

4. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise;Off. J. Eur. Communities,2002

5. Common Noise Assessment Methods in Europe (CNOSSOS-EU);Kephalopoulos,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3