SPOT: Testing Stream Processing Programs with Symbolic Execution and Stream Synthesizing

Author:

Ye QianORCID,Lu Minyan

Abstract

Adoption of distributed stream processing (DSP) systems such as Apache Flink in real-time big data processing is increasing. However, DSP programs are prone to be buggy, especially when one programmer neglects some DSP features (e.g., source data reordering), which motivates development of approaches for testing and verification. In this paper, we focus on the test data generation problem for DSP programs. Currently, there is a lack of an approach that generates test data for DSP programs with both high path coverage and covering different stream reordering situations. We present a novel solution, SPOT (i.e., Stream Processing Program Test), to achieve these two goals simultaneously. At first, SPOT generates a set of individual test data representing each path of one DSP program through symbolic execution. Then, SPOT composes these independent data into various time series data (a.k.a, stream) in diverse reordering. Finally, we can perform a test by feeding the DSP program with these streams continuously. To automatically support symbolic analysis, we also developed JPF-Flink, a JPF (i.e., Java Pathfinder) extension to coordinate the execution of Flink programs. We present four case studies to illustrate that: (1) SPOT can support symbolic analysis for the commonly used DSP operators; (2) test data generated by SPOT can more efficiently achieve high JDU (i.e., Joint Dataflow and UDF) path coverage than two recent DSP testing approaches; (3) test data generated by SPOT can more easily trigger software failure when comparing with those two DSP testing approaches; and (4) the data randomly generated by those two test techniques are highly skewed in terms of stream reordering, which is measured by the entropy metric. In comparison, it is even for test data from SPOT.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference59 articles.

1. The 8 requirements of real-time stream processing

2. GPU-Accelerated Parallel Hierarchical Extreme Learning Machine on Flink for Big Data

3. Apache Flink™: Stream and Batch Processing in a Single Engine;Carbone;Bull. IEEE Comput. Soc. Tech. Comm. Data Eng.,2016

4. s2p: Provenance Research for Stream Processing System

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3