Quantification of the Information Loss Resulting from Temporal Aggregation of Wind Turbine Operating Data

Author:

Beretta MattiaORCID,Pelka Karoline,Cusidó JordiORCID,Lichtenstein TimoORCID

Abstract

SCADA operating data are more and more used across the wind energy domain, both as a basis for power output prediction and turbine health status monitoring. Current industry practice to work with this data is by aggregating the signals at coarse resolution of typically 10-min averages, in order to reduce data transmission and storage costs. However, aggregation, i.e., downsampling, induces an inevitable loss of information and is one of the main causes of skepticism towards the use of SCADA operating data to model complex systems such as wind turbines. This research aims to quantify the amount of information that is lost due to this downsampling of SCADA operating data and characterize it with respect to the external factors that might influence it. The issue of information loss is framed by three key questions addressing effects on the local and global scale as well as the influence of external conditions. Moreover, recommendations both for wind farm operators and researchers are provided with the aim to improve the information content. We present a methodology to determine the ideal signal resolution that minimized storage footprint, while guaranteeing high quality of the signal. Data related to the wind, electrical signals, and temperatures of the gearbox resulted as the critical signals that are largely affected by an information loss upon aggregation and turned out to be best recorded and stored at high resolutions. All analyses were carried out using more than one year of 1 Hz SCADA data of onshore wind farm counting 12 turbines located in the UK.

Funder

Bundesministerium für Wirtschaft und Energie

Centro para el Desarrollo Tecnológico Industrial

Agència de Gestió d'Ajuts Universitaris i de Recerca

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3