Analysis Strategies for MHz XPCS at the European XFEL

Author:

Dallari FrancescoORCID,Reiser MarioORCID,Lokteva IrinaORCID,Jain AvniORCID,Möller JohannesORCID,Scholz MarkusORCID,Madsen AndersORCID,Grübel Gerhard,Perakis FivosORCID,Lehmkühler FelixORCID

Abstract

The nanometer length-scale holds precious information on several dynamical processes that develop from picoseconds to seconds. In the past decades, X-ray scattering techniques have been developed to probe the dynamics at such length-scales on either ultrafast (sub-nanosecond) or slow ((milli-)second) time scales. With the start of operation of the European XFEL, thanks to the MHz repetition rate of its X-ray pulses, even the intermediate μs range have become accessible. Measuring dynamics on such fast timescales requires the development of new technologies such as the Adaptive Gain Integrating Pixel Detector (AGIPD). μs-XPCS is a promising technique to answer many scientific questions regarding microscopic structural dynamics, especially for soft condensed matter systems. However, obtaining reliable results with complex detectors at free-electron laser facilities is challenging and requires more sophisticated analysis methods compared to experiments at storage rings. Here, we discuss challenges and possible solutions to perform XPCS experiments with the AGIPD at European XFEL; in particular, at the Materials Imaging and Dynamics (MID) instrument. We present our data analysis pipeline and benchmark the results obtained at the MID instrument with a well-known sample composed by silica nanoparticles dispersed in water.

Funder

Deutsche Forschungsgemeinschaft

Vetenskapsrådet

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3