Abstract
Welding frames with differing geometries is one of the most crucial stages in the production of high-end bicycles. This paper proposes a parallel algorithm and a mixed integer linear programming formulation for scheduling a two-machine robotic welding station. The time complexity of the introduced parallel method is O(log2n) on an n3-processor Exclusive Read Exclusive Write Parallel Random-Access Machine (EREW PRAM), where n is the problem size. The algorithm is designed to take advantage of modern graphics cards to significantly accelerate the computations. To present the benefits of the parallelization, the algorithm is compared to the state of art sequential method and a solver-based approach. Experimental results show an impressive speedup for larger problem instances—up to 314 on a single Graphics Processing Unit (GPU), compared to a single-threaded CPU execution of the sequential algorithm.
Funder
National Science Centre of Poland
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献