Direct Evaluation of the Stress Intensity Factors for the Single and Multiple Crack Problems Using the P-Version Finite Element Method and Contour Integral Method

Author:

Zhang JianmingORCID,Yang WenshengORCID,Chen Jun,Xu Rui

Abstract

Stress intensity factor (SIF) is one of three important parameters in classical linear elastic fracture mechanics (LEFM). The evaluation of SIFs is of great significance in the field of engineering structural and material damage assessment, such as aerospace engineering and automobile industry, etc. In this paper, the SIFs of a central straight crack plate, a slanted single-edge cracked plate under end shearing, the offset double-edge cracks rectangular plate, a branched crack in an infinite plate and a crucifix crack in a square plate under bi-axial tension are extracted by using the p-version finite element method (P-FEM) and contour integral method (CIM). The above single- and multiple-crack problems were investigated, numerical results were compared and analyzed with results using other numerical methods in the literature such as the numerical manifold method (NMM), improved approach using the finite element method, particular weight function method and exponential matrix method (EMM). The effectiveness and accuracy of the present method are verified.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. A finite element method for crack growth without remeshing

2. XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials

3. Extended Finite Element Method for Direct Evaluation of Strength Intensity Factors;Dong;Chin. J. Comput. Mech.,2008

4. Computation of Stress Intensity Factors for Interface Cracks between Two Dissimilar Materials Using Extended Finite Element Methods;Shouyan;Eng. Mech.,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3