Birds Eye View Look-Up Table Estimation with Semantic Segmentation

Author:

Lee DongkyuORCID,Tay Wee Peng,Kee Seok-Cheol

Abstract

In this work, a study was carried out to estimate a look-up table (LUT) that converts a camera image plane to a birds eye view (BEV) plane using a single camera. The traditional camera pose estimation fields require high costs in researching and manufacturing autonomous vehicles for the future and may require pre-configured infra. This paper proposes an autonomous vehicle driving camera calibration system that is low cost and utilizes low infra. A network that outputs an image in the form of an LUT that converts the image into a BEV by estimating the camera pose under urban road driving conditions using a single camera was studied. We propose a network that predicts human-like poses from a single image. We collected synthetic data using a simulator, made BEV and LUT as ground truth, and utilized the proposed network and ground truth to train pose estimation function. In the progress, it predicts the pose by deciphering the semantic segmentation feature and increases its performance by attaching a layer that handles the overall direction of the network. The network outputs camera angle (roll/pitch/yaw) on the 3D coordinate system so that the user can monitor learning. Since the network’s output is a LUT, there is no need for additional calculation, and real-time performance is improved.

Funder

Korea Institute for Advancement of Technology

Ministry of Science and ICT, South Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference20 articles.

1. Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes;Hong;arXiv,2021

2. Hierarchical Multi-scale Attention for Semantic Segmentation;Tao;arXiv,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3