Characterization of Sonic Events Present in Natural-Urban Hybrid Habitats Using UMAP and SEDnet: The Case of the Urban Wetlands

Author:

Poblete Víctor,Espejo Diego,Vargas Víctor,Otondo Felipe,Huijse Pablo

Abstract

We investigated whether the use of technological tools can effectively help in manipulating the increasing volume of audio data available through the use of long field recordings. We also explored whether we can address, by using these recordings and tools, audio data analysis, feature extraction and determine predominant patterns in the data. Similarly, we explored whether we can visualize feature clusters in the data and automatically detect sonic events. Our focus was primarily on enhancing the importance of natural-urban hybrid habitats within cities, which benefit communities in various ways, specifically through the natural soundscapes of these habitats that evoke memories and reinforce a sense of belonging for inhabitants. The loss of sonic heritage can be a precursor to the extinction of biodiversity within these habitats. By quantifying changes in the soundscape of these habitats over long periods of time, we can collect relevant information linked to this eventual loss. In this respect, we developed two approaches. The first was the comparison among habitats that progressively changed from natural to urban. The second was the optimization of the field recordings’ labeling process. This was performed with labels corresponding to the annotations of classes of sonic events and their respective start and end times, including events temporarily superimposed on one another. We compared three habitats over time by using their sonic characteristics collected in field conditions. Comparisons of sonic similarity or dissimilarity among patches were made based on the Jaccard coefficient and uniform manifold approximation and projection (UMAP). Our SEDnet model achieves a F1-score of 0.79 with error rate 0.377 and with the area under PSD-ROC curve of 71.0. In terms of computational efficiency, the model is able to detect sound events from an audio file in a time of 14.49 s. With these results, we confirm the usefulness of the methods used in this work for the process of labeling field recordings.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3