Intelligent System for Railway Wheelset Press-Fit Inspection Using Deep Learning

Author:

Jwo Jung-Sing,Lin Ching-Sheng,Lee Cheng-HsiungORCID,Zhang Li,Huang Sin-Ming

Abstract

Railway wheelsets are the key to ensuring the safe operation of trains. To achieve zero-defect production, railway equipment manufacturers must strictly control every link in the wheelset production process. The press-fit curve output by the wheelset assembly machine is an essential indicator of the wheelset’s assembly quality. The operators will still need to manually and individually recheck press-fit curves in our practical case. However, there are many uncertainties in the manual inspection. For example, subjective judgment can easily cause inconsistent judgment results between different inspectors, or the probability of human misinterpretation can increase as the working hours increase. Therefore, this study proposes an intelligent railway wheelset inspection system based on deep learning, which improves the reliability and efficiency of manual inspection of wheelset assembly quality. To solve the severe imbalance in the number of collected images, this study establishes a predicted model of press-fit quality based on a deep Siamese network. Our experimental results show that the precision measurement is outstanding for the testing dataset contained 3863 qualified images and 28 unqualified images of press-fit curves. The proposed system will serve as a successful case of a paradigm shift from traditional manufacturing to digital manufacturing.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3