A Systemic Analysis of the Environmental Impacts of Gold Mining within the Blyde River Catchment, a Strategic Water Area of South Africa

Author:

Selebalo Itumeleng MORCID,Scholes Mary CORCID,Clifford-Holmes Jai KORCID

Abstract

Exploratory modelling of the impact of gold mining on groundwater in a strategic water area of South Africa was undertaken. A systems dynamics (SD) model was developed to simulate the impact of gold mining on water quality, focusing on groundwater contamination risk, within the context of competing developmental priorities around water resource development and the socio-economic gains from gold mining. The model also identified interventions to minimise the impacts by the year 2040. The study area was the Blyde River Catchment (BRC), which is part of the Olifants Water Management Area in South Africa. This area is an important contributor, currently and in the future, to freshwater flows and groundwater in the Olifants River Catchment, which is one of South Africa’s most economically important catchments. The model development process included a causal loop diagram­–based problem conceptualisation, followed by the drawing of stock-flow diagrams and the determining of model parameters based on a combination of background literature, data from environmental impact assessments, and from the national Department of Water and Sanitation. The model showed the potential environmental risks of gold mine wastewater production and interventions to minimise these risks. The most effective intervention identified to reduce the risk of groundwater contamination was the development and use of synthetic-lined tailings dams. The baseline simulation result of sulphate loading of 5430 t/year can be reduced by 3070 t/year to give a simulated sulphate load of 2270 t/year in 2040 using this intervention. In comparison, the simulated wastewater recycling intervention only reduced the sulphate load to 4630 t/year and the wastewater treatment interventions to 3420 t/year. This project contributes to the exploratory modelling of an understudied region of the Olifants River Catchment that is a crucial provider of freshwater flows to the Olifants, which is threatened by increasing gold mining in the upper BRC. The SD model highlighted the importance of protecting the dolomitic aquifers in the BRC for the long term sustainability of the catchment, which is particularly important if groundwater development occurs.

Funder

Department of Science and Innovation/National Research Foundation of South Africa

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference45 articles.

1. Water as an Inescapable Risk

2. Water Security in South Africa;Muller,2009

3. Improving the Legal Protection of Strategic Water Source Areas: A South African Perspective;Mkhonza,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3