Scale-Aware Tracking Method with Appearance Feature Filtering and Inter-Frame Continuity

Author:

He Haiyu1ORCID,Chen Zhen1,Li Zhen1,Liu Xiangdong1,Liu Haikuo2ORCID

Affiliation:

1. School of Automation, Beijing Institute of Technology, Beijing 100010, China

2. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100010, China

Abstract

Visual object tracking is a fundamental task in computer vision that requires estimating the position and scale of a target object in a video sequence. However, scale variation is a difficult challenge that affects the performance and robustness of many trackers, especially those based on the discriminative correlation filter (DCF). Existing scale estimation methods based on multi-scale features are computationally expensive and degrade the real-time performance of the DCF-based tracker, especially in scenarios with restricted computing power. In this paper, we propose a practical and efficient solution that can handle scale changes without using multi-scale features and can be combined with any DCF-based tracker as a plug-in module. We use color name (CN) features and a salient feature to reduce the target appearance model’s dimensionality. We then estimate the target scale based on a Gaussian distribution model and introduce global and local scale consistency assumptions to restore the target’s scale. We fuse the tracking results with the DCF-based tracker to obtain the new position and scale of the target. We evaluate our method on the benchmark dataset Temple Color 128 and compare it with some popular trackers. Our method achieves competitive accuracy and robustness while significantly reducing the computational cost.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3