A Machine Learning Approach for Movement Monitoring in Clustered Workplaces to Control COVID-19 Based on Geofencing and Fusion of Wi-Fi and Magnetic Field Metrics

Author:

Abd El-Haleem Ahmed M.ORCID,Mohamed Noor El-Deen M.,Abdelhakam Mostafa M.ORCID,Elmesalawy Mahmoud M.

Abstract

The ubiquitous existence of COVID-19 has required the management of congested areas such as workplaces. As a result, the use of a variety of inspiring tools to deal with the spread of COVID-19 has been required, including internet of things, artificial intelligence (AI), machine learning (ML), and geofencing technologies. In this work, an efficient approach based on the use of ML and geofencing technology is proposed to monitor and control the density of persons in workplaces during working hours. In particular, the workplace environment is divided into a number of geofences in which each person is associated with a set of geofences that make up their own cluster using a dynamic user-centric clustering scheme. Different metrics are used to generate a unique geofence digital signature (GDS) such as Wi-Fi basic service set identifier, Wi-Fi received signal strength indication, and magnetic field data, which can be collected using the person’s smartphone. Then, these metrics are utilized by different ML techniques to generate the GDS for each indoor geofence and each building geofence as well as to detect whether the person is in their cluster. In addition, a Layered-Architecture Geofence Division method is considered to reduce the processing overhead at the person’s smartphone. Our experimental results demonstrate that the proposed approach can perform well in a real workplace environment. The results show that the system accuracy is about 98.25% in indoor geofences and 76% in building geofences.

Funder

Science and Technology Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FLOW: A Scalable Multi-Model Federated Learning Framework on the Wheels;2023 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST);2023-05

2. Geo-Fencing and Overspeed Alert SMS System;2023 Second International Conference on Electronics and Renewable Systems (ICEARS);2023-03-02

3. On the Adoption of Modern Technologies to Fight the COVID-19 Pandemic: A Technical Synthesis of Latest Developments;COVID;2023-01-16

4. An IoT-Based Wristband for Automatic People Tracking, Contact Tracing and Geofencing for COVID-19;Sensors;2022-12-16

5. Geofencing-based Congestion Control in Workplaces Environment using Sequential Pattern Mining;2022 4th Novel Intelligent and Leading Emerging Sciences Conference (NILES);2022-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3