Secure Spectrum Access, Routing, and Hybrid Beamforming in an Edge-Enabled mmWave Massive MIMO CRN-Based Internet of Connected Vehicle (IoCV) Environments

Author:

Pari DeepanramkumarORCID,Natarajan JaisankarORCID

Abstract

A cognitive radio network (CRN) is integrated with the Internet of Connected Vehicles (IoCV) in order to address spectrum scarcity and communication reliability issues. However, it is limited, possessing less throughput, a low packet delivery ratio, high latency, and high mobility in the spectrum. In this research study, the existing issues are addressed by proposing a 6G cognitive radio network–Internet of connected vehicles (6GCRN–IoCV) approach. Initially, all the entities such as secondary users (SUs), primary users (PUs), and pedestrians are authenticated in blockchain to ensure security. The edge-assisted roadside units (ERSU) initiate clustering only for authenticated SUs using the improved DBSCAN algorithm in consideration of several metrics. The ERSU then generates an intersection-aware map using the spatial and temporal-based logistic regression algorithm (STLR) to reduce collisions in the intersection. The spectrum utilization is improved by performing spectrum sensing in which all the SUs involved in spectrum sensing use lightweight convolutional neural networks (Lite-CNN) in consideration of several metrics and provide the sensing report to the fusion center (FC) in an encrypted manner to reduce the spectrum scarcity and security issues. The communications between the SUs are necessary to avoid risks in the IoCV environment. Hence, optimal routing is performed using the Dingo Optimization Algorithm (DOA), which increases throughput and packet delivery ratio. Finally, communication reliability is enhanced by performing hybrid beamforming, and this exploits the multi-agent-based categorical Deep-Q Network (categorical DQN), which increases spectral efficiency based on its adaptive intelligent behavior. The proposed study is simulated using the SUMO and OMNeT++ simulation tools and the performances are validated with existing works using several performance metrics. The result of the simulation shows that the proposed work performs better than the existing approaches.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3