Intelligent Generation of Cross Sections Using a Conditional Generative Adversarial Network and Application to Regional 3D Geological Modeling

Author:

Ran Xiangjin,Xue Linfu,Sang Xuejia,Pei YaoORCID,Zhang Yanyan

Abstract

The cross section is the basic data for building 3D geological models. It is inefficient to draw a large number of cross sections to build an accurate model. This paper reports the use of multi-source and heterogeneous geological data, such as geological maps, gravity and aeromagnetic data, by a conditional generative adversarial network (CGAN) and implements an intelligent generation method of cross sections to overcome the problem of inefficient modeling data based on CGAN. Intelligent generation of cross sections and 3D geological modeling are carried out in three different areas in Liaoning Province. The results show that: (a) the accuracy of the proposed method is higher than the GAN and Variational AutoEncoder (VAE) models, achieving 87%, 45% and 68%, respectively; (b) the 3D geological model constructed by the generated cross sections in our study is consistent with manual creation in terms of stratum continuity and thickness. This study suggests that the proposed method is significant for surmounting the difficulty in data processing involved in regional 3D geological modeling.

Funder

China Geological Survey

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3