Latin Matchings and Ordered Designs OD(n−1, n, 2n−1)

Author:

Jin KaiORCID,Zhu TaikunORCID,Gu ZhaoquanORCID,Sun XiaomingORCID

Abstract

This paper revisits a combinatorial structure called the large set of ordered design (LOD). Among others, we introduce a novel structure called Latin matching and prove that a Latin matching of order n leads to an LOD(n−1, n, 2n−1); thus, we obtain constructions for LOD(1, 2, 3), LOD(2, 3, 5), and LOD(4, 5, 9). Moreover, we show that constructing a Latin matching of order n is at least as hard as constructing a Steiner system S(n−2, n−1, 2n−2); therefore, the order of a Latin matching must be prime. We also show some applications in multiagent systems.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference42 articles.

1. Applications of Combinatorial Designs in Computer Science;Colbourn;ACM Comput. Surv.,1989

2. Gopalakrishnan, K., Stinson, D., and Cheriton, D. (2006, January 18–22). Applications of Orthogonal Arrays to Computer Science. Proceedings of the Sixth International Conference on Data Mining (ICDM’06), Hong Kong, China.

3. Raghavarao, D. (1988). Constructions and Combinatorial Problems in Design of Experiments, Dover Publications. Dover books on advanced mathematics.

4. Hedayat, A., Sloane, N., and Stufken, J. (1999). Orthogonal Arrays Theory and Applications, Springer.

5. Beth, T., Jungnickel, D., and Lenz, H. (1999). Design Theory, Cambridge University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3