Effect of Hydrostatic Initial Stress on a Rotating Half-Space in the Context of a Two-Relaxation Power-Law Model

Author:

Aljadani Maryam H.ORCID,Zenkour Ashraf M.ORCID

Abstract

The simple and refined Lord–Shulman theories, the simple and refined Green–Lindsay theories as well as the coupled thermoelasticity theory were all employed to investigate the deformation of a rotating thermoelastic half-space. The present medium is subjected to initial pressure, bounded by hydrostatic initial stress and rotation. A unified heat conduction equation is presented. The normal mode strategy is applied to get all analytical expressions of temperature, stresses, and displacements. Some outcomes are tabulated to validate the present refined theories with the simple and classical thermoelasticity theories. The effect of hydrostatic initial stress was investigated on all field quantities of the rotating thermoelastic half-space with and without initial pressure. Two- and three-dimensional plots are illustrated in the context of refined theories to discuss the behaviors of all variables through the coordinate axes. Some particular cases of special interest have been deduced from the present investigation.

Funder

the Deanship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3